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» Unsupervised Domain Adaptation (UDA)

» train/test data come from different distributions

» test data is unlabeled until the test phase, so target labels are not available for validation
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Dy 1s partitioned into Dy, and D,
Output: DEV Risk Rpgy(g) of model g

Embed Adapted Features into Model Selection

» Recent feature adaptation methods reduce distribution discrepancy

Compute features and predictions using model g:
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» Source Risk: a highly biased estimator of the underlying target risk in UDA

» Target Risk: requires target labels that contradicts with the assumption of UDA

» IWCV unstable because of the unbounded variance

Ropev(g) = mean(L) + nmean(W) — 7

Control Variate
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» Density ratio is not readily accessible
Fitting a gaussian distribution as in the original paper is not reasonable.
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» Various datasets: VisDA /Office/Digits

» Various models: CDAN, MCD, GTA
» Deep Embedded Validation is empirically validated

Rank the best model 7 = argmin, .,., R;
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