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The Problem We Solve Overall Idea Experimental Results (toy data for intuitive explanation)
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» trade-off between speed and accurate selection : ’ standard deviation of noise. » '

» freeze the feature extractor to avoid gradient update
» leverage theoretical optimization to avoid hyper-parameter tuning

How to select the best pre-trained

» setup a model to estimate the compatibility between features and labels

» 9 datasets, 10 pre-trained models; x-axis (accuray) vs. y-axis (assessment score)
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Brief Overview of LogeME > F) F, . .
ply|F) = ] P(w)ply|F, w)dw > regression tasks (larger LogME indicates better performance)
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» generally applicable to a broad range of tasks with A=al +BF F,m=BA1FTy » contrastive pre-trained models (perfectly predict the order after fine-tuning)
» L(«, 8) measures how likely labels are with respect to features. 1.7 ————————
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13:  Compute Ly = %E(a, ) using Eq. 2

14: end for Complexity per for-loop Overall complexity
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» Code is available at https://github.com /thuml/LogME
» Will be integrated into https://github.com/thuml/Transfer-Learning-Library in the future.

» tested on 22 pre-trained models and 17 downstream tasks
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