LogME: Practical Assessment of Pre-trained Models for Transfer Learning

Kaichao You, Yong Liu, Jianmin Wang, Mingsheng Long (School of Software, Tsinghua University)

The Problem We Solve

How to select the best pre-trained model before fine-tuning!

Pre-trained Model Selection Problem

- ► Transfer learning is a widely-used paradigm for practitioners.
- ► There have been some papers working on improving transfer learning when a pre-trained model is given:
- ► Co-Tuning for Transfer Learning, NeurIPS 2020
- ► Stochastic Normalization, NeurIPS 2020
- ▶ But which pre-trained model should be used if we have a large model zoo?
- ► TorchVision has over 100 pre-trained models.
- ► HuggingFace has over 6000 pre-trained models.
- ► Design a general and fast algorithm for accurate selection!

Brief Overview of LogME

generally applicable to a broad range of tasks

Modality	Pre-train	Target	LEEP	NCE	LogME
	classification	classification	✓	√	✓
vision	classification	regression	X	X	
	contrastive	classification	X	X	
	contrastive	regression	X	X	
language	LM	classification	X	X	√

► fast and memory-efficient

	wall-clock time		memory footprint	
	fine-tune (upper bound)	161000s	fine-tune (upper bound)	6.3 GB
Commeter Vicion	extract feature (lower bound) 37s		extract feature (lower bound) 43 MB	
Computer Vision	LogME	50s	LogME	53 MB
	benefit	$3200\uparrow$	benefit	$120\uparrow$
	fine-tune (upper bound)	100200s	fine-tune (upper bound)	88 GB
Notural I on avera Dragging	extract feature (lower bound) 1130s		extract feature (lower bound) 1.2 GB	
Natural Language Processing	LogME	1157s	LogME	1.2 GB
	benefit	86 ↑	benefit	$73 \uparrow$

tested on 22 pre-trained models and 17 downstream tasks

Overall Idea

- Drawback of brute-force fine-tuning
 - hyper-parameter tuning, model training (both time-consuming)

- trade-off between speed and accurate selection
- ► freeze the feature extractor to avoid gradient update
- ► leverage theoretical optimization to avoid hyper-parameter tuning
- setup a model to estimate the compatibility between features and labels

LogME – unary output

- ightharpoonup measure p(y|f) with linear model y = w'f
- \triangleright A naive solution (point estimation) of training optimal w^* and computing $p(y|f, w^*)$ is prone to over-fitting
- ► A better solution (distributional estimation) is to take expectation over all possible w with a causal graph

- $ightharpoonup p(y|F) = \int p(w)p(y|F,w)dw$
- $\mathcal{L}(\alpha,\beta) = \log p(y|F,\alpha,\beta) = \frac{n}{2}\log\beta + \frac{D}{2}\log\alpha \frac{n}{2}\log2\pi \frac{\beta}{2}||Fm y||_2^2 \frac{\alpha}{2}m^Tm \frac{1}{2}\log|A|$ with $A = \alpha I + \beta F^TF$, $m = \beta A^{-1}F^Ty$
- \triangleright $\mathcal{L}(\alpha, \beta)$ measures how likely labels are with respect to features.
- ▶ How to choose α, β ?
- ► alternative optimization (no grid search!)

Algorithm 1 LogME 1: **Input:** Pre-trained model ϕ

- Target dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ 2: Output: logarithm of maximum evidence (LogME)
- 3: Extract features using pre-trained model ϕ :
- $F \in \mathbb{R}^{n \times D}$, $f_i = \phi(x_i)$, $Y \in \mathbb{R}^{n \times K}$ 4: Compute SVD $F^TF = V \operatorname{diag}\{\sigma\}V^T$
- 5: **for** k = 1 to K **do**
- 6: Let $y = Y^{(k)} \in \mathbb{R}^n$, initialize $\alpha = 1, \beta = 1$
- while α, β not converge do
- Compute $\gamma = \sum_{i=1}^{D} \frac{\beta \sigma_i}{\alpha + \beta \sigma_i}$, $\Lambda = \text{diag}\{(\alpha + \beta \sigma)\}$
- Naïve: $A = \alpha I + \beta F^T F, m = \beta A^{-1} F^T y$
- **Optimized**: $m = \beta(V(\Lambda^{-1}(V^T(F^Ty))))$ Update $\alpha \leftarrow \frac{\gamma}{m^T m}, \beta \leftarrow \frac{n-\gamma}{||Fm-y||_2^2}$
- end while Compute $\mathcal{L}_k = \frac{1}{n}\mathcal{L}(\alpha,\beta)$ using Eq. 2
- 14: **end for**
- 15: Return LogME $\frac{1}{K} \sum_{k=1}^{K} \mathcal{L}_k$

- complexity $\mathcal{O}(KD^3 + nKD^2)$
- for common cases
 - $D \approx 10^3, n \approx 10^4, K \approx 10^3$
 - 10¹³ operations needs 10⁴ seconds not fast enough ⊗
- bottleneck matrix inverse and MatMul (line 9)
- Optimization (line 10):
 - leverage results from line 4
 - avoid matrix inverse
 - MatMul → MatVecMul
- reduce from $O(n^4)$ to $O(n^3)$

	Complexity per for-loop	Overall complexity
naïve	$\mathcal{O}(D^3 + nD^2)$	$\mathcal{O}(KD^3 + nKD^2)$
optimized	$\mathcal{O}(D^2 + nD)$	$\mathcal{O}(KD^2 + nKD + D^3 + nD^2)$

Experimental Results (toy data for intuitive explanation)

- Generated data with increasing noise (decreasing feature quality).
- ► LogME decreases as feature quality decreases.
- ► LogME can properly measure the quality of features!

Experimental Results (compared with prior methods)

- ▶ 9 datasets, 10 pre-trained models; x-axis (accuray) vs. y-axis (assessment score)
- ▶ LogME has largest τ_w in most tasks

Experimental Results (LogME exclusive)

- regression tasks (larger LogME indicates better performance)
- contrastive pre-trained models (perfectly predict the order after fine-tuning)

► NLP tasks (7 GLUE tasks with 8 popular pre-trained language models)

Useful Links

- Code is available at https://github.com/thuml/LogME
 - ► Will be integrated into https://github.com/thuml/Transfer-Learning-Library in the future.