

Status Quo of Transfer Learning

► The naïve approach is still very popular

- ▶ ... but very wasteful.
- ► These task-specific layers take up many parameters in pre-trained models. Parameter count in popular pre-trained models from torchvision and transformers.

Pre-trained model	ResNet-50	DenseNet-121	Inception-
Task-specific parameters / Million	2.0	1.0	2.0
Total parameters / Million	25.6	8.0	27.2
Percentage / %	7.8	12.5	7.4

The challenge of reusing task-specific pre-trained Layer(s) ► How to automatically map categories across datasets.

… can be solved if we can figure out the relationship of categories. ► For example, when it learns a new category like "elephant", it can automatically learn that elephants can be represented by several kinds of elephants in ImageNet.

School of Software - Tsinghua University - China

Co-Tuning for Transfer Learning Kaichao You, Zhi Kou, Mingsheng Long, Jianmin Wang

The Co-Tuning Framework

- \blacktriangleright Learn the category relationship $p(y_s|y_t)$.
- Pre-trained task-specific layers can be retained during training, supervised by source labels y_s translated from y_t .
- After training, task-specific layers will be removed so that Co-Tuning improves fine-tuning without additional inference cost.

How to Learn $p(y_s|y_t)$

- ► The direct approach: average over source predictions for each target category. $p(y_s|y_t=y)pprox |\mathcal{D}_t^y|^{-1}\Sigma_{(x,y_t)\in\mathcal{D}_t^y}f_0(x), \quad \mathcal{D}_t^y=\{(x,y_t)\in\mathcal{D}_t|y_t=y\}$ The reverse approach: (1) learn $y_s \rightarrow y_t$ mapping (maps probabilistic source)
- predictions to target labels); (2) recover $p(y_s|y_t)$ by Bayes's rule.
 - Algorithm 1 Category relationship learning (the reverse approach) **Input:** f_0 , source validation data $\mathcal{D}_s^v = \{(x_s^i, y_s^i)\}_{i=1}^{m_v}$, target training data $\mathcal{D}_t = \{(x_t^i, y_t^i)\}_{i=1}^{m_t}$ **Output:** Category relationship $p(y_s|y_t)$ Call Alg. 2 to calibrate f_0 with \mathcal{D}_s^v , which returns the calibrated deep model \tilde{f}_0 Construct $\tilde{\mathcal{D}}_t = \{(\tilde{f}_0(x_t^i), y_t^i)\}_{i=1}^{m_t}$, further split it into training set $\tilde{\mathcal{D}}_t^{train}$ and validation set $\tilde{\mathcal{D}}_t^v$ Learn a neural network g from $\tilde{\mathcal{D}}_t^{train}$ to map calibrated source predictions to target labels Call Alg. 2 to calibrate g with $\tilde{\mathcal{D}}_t^v$, which returns $p(y_t|y_s) \approx \tilde{g}(y_s)$ Compute marginal probability $p(y_s)$ and $p(y_t)$ from $\tilde{\mathcal{D}}_t$ Compute $p(y_s|y_t)$ by Bayes's rule: $p(y_s = i|y_t = j) =$ Return $p(y_s|y_t)$
- ▶ In practice, the direct approach is simple and straightforward, while the reverse one is more effective.

(Optional) Calibration of Pre-trained Networks

- \blacktriangleright We want $f_0(x)$ to reflect the probability of source categories with high fidelity. ► Without calibration, DNNs can be over-confident.
- Calibration can be done by minimizing negative log-likelihood (NLL) on validation data through adjusting a single temperature.

Algorithm 2 Neural network calibration

- **Input:** DNN f that outputs uncalibrated logits, validation data $\mathcal{D} = \{x^i, y^i\}_{i=1}^m$ **Output:** A neural network \tilde{f} that outputs **calibrated** logits Compute the scaling parameter $t^* = \arg\min_{t>0} \sum_{i=1}^m \operatorname{cross_entropy}(\operatorname{softmax}(f(x^i)/t), y^i)$ Return f, where $f(x) = f(x)/t^*$
- ► We advocate that pre-trained model providers release pre-trained models and their calibrated version.

n-V3 BERT-base 22.9108.9 **21.0**

		bear	cat	dove	duck		
$'_{s}$	← [0.30	0.60	0.01	0.01		- i tiger
	-	0.01	0.01	0.40	0.50		swan
't ger)	query	•••	•••	•••		•••	•••

$$\frac{p(y_s=i)}{p(y_t=j)}p(y_t=j|y_s=i)$$

Experimental Results

- Co-Tuning is empirically evaluated in several dimensions:
- among a wide spectrum of dataset scales.

▶ Pre-trained model: ResNet-50, DenseNet-121 and BERT-base. Code is available at https://github.com/thuml/CoTuning Main experimental results are shown in the following tables.

Table 2: Classification accuracy in medium-scale classification datasets (Pre-trained ResNet-50).

Dataset	Method	Sampling Rates				
		15%	30%	50%	100%	
CUB-200-2011	Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning	$\begin{array}{c} 45.25 \pm 0.12 \\ 45.08 \pm 0.19 \\ 46.83 \pm 0.21 \\ 47.74 \pm 0.23 \\ \textbf{52.58} \pm 0.53 \end{array}$	$\begin{array}{c} 59.68 \pm 0.21 \\ 57.78 \pm 0.24 \\ 60.37 \pm 0.25 \\ 63.38 \pm 0.29 \\ \textbf{66.47} \pm 0.17 \end{array}$	$\begin{array}{c} 70.12 \pm 0.29 \\ 69.47 \pm 0.29 \\ 71.38 \pm 0.20 \\ 72.56 \pm 0.17 \\ \textbf{74.64} \pm 0.36 \end{array}$	$\begin{array}{c} 78.01 \pm 0.16 \\ 78.44 \pm 0.17 \\ 78.63 \pm 0.18 \\ 78.85 \pm 0.31 \\ \textbf{81.24} \pm 0.14 \end{array}$	
Stanford Cars	Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning	$\begin{array}{c} 36.77 \pm 0.12 \\ 36.10 \pm 0.30 \\ 39.37 \pm 0.34 \\ 40.57 \pm 0.12 \\ \textbf{46.02} \pm 0.18 \end{array}$	$\begin{array}{c} 60.63 \pm 0.18 \\ 60.30 \pm 0.28 \\ 63.28 \pm 0.27 \\ 64.13 \pm 0.18 \\ \textbf{69.09} \pm 0.10 \end{array}$	$\begin{array}{c} 75.10 \pm 0.21 \\ 75.48 \pm 0.22 \\ 76.53 \pm 0.24 \\ 76.78 \pm 0.21 \\ \textbf{80.66} \pm 0.25 \end{array}$	$egin{array}{l} 87.20 \pm 0.19 \ 86.58 \pm 0.26 \ 86.32 \pm 0.20 \ 87.63 \pm 0.27 \ {f 89.53} \pm 0.09 \end{array}$	
FGVC Aircraft	Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning	$\begin{array}{c} 39.57 \pm 0.20 \\ 39.27 \pm 0.24 \\ 42.16 \pm 0.21 \\ 40.41 \pm 0.12 \\ \textbf{44.09} \pm 0.67 \end{array}$	$\begin{array}{c} 57.46 \pm 0.12 \\ 57.12 \pm 0.27 \\ 58.60 \pm 0.29 \\ 59.23 \pm 0.31 \\ \textbf{61.65} \pm 0.32 \end{array}$	67.93 ± 0.28 67.46 ± 0.26 68.51 ± 0.25 69.19 ± 0.13 72.73 ± 0.08	81.13 ± 0.21 80.98 ± 0.29 80.44 ± 0.20 81.48 ± 0.18 83.87 ± 0.09	

Method	Sampling Rates				
	15%	30%	50%	100%	
Fine-tune (baseline)	76.60 ± 0.04	80.15 ± 0.25	82.50 ± 0.43	84.41 ± 0.22	
L ² -SP (Li et al., 2018)	77.53 ± 0.47	80.67 ± 0.29	83.07 ± 0.39	84.78 ± 0.16	
DELTA (Li et al., 2019)	76.94 ± 0.37	79.72 ± 0.24	82.00 ± 0.52	84.66 ± 0.08	
BSS (Chen et al., 2019)	77.39 ± 0.15	80.74 ± 0.22	82.75 ± 0.59	84.71 ± 0.13	
Co-Tuning	$\textbf{77.64} \pm 0.23$	81.19 ± 0.18	83.43 ± 0.22	85.65 ± 0.11	

Case Study in CUB

- source distributions $p(y_s|y_t)$.

CUB Class	Top 3 Similar ImageNet Class			
Crested Auklet	black swan oystercatcher black grouse			
Parakeet Auklet	black grouse oystercatcher junco			

- the pre-trained dataset is diverse enough.

Task: 4 visual classification tasks and one NLP task (named entity recognition). \blacktriangleright Dataset scale: medium-scale dataset (≈ 100 samples per class) and large-scale dataset (≈ 1000 samples per class). We also explore different sampling rates (the proportion of images used for training) to compare the performance

Table 3: Classification accuracy in large-scale COCO-70 dataset (Pre-trained DenseNet-121).

► Take two similar bird species "Crested Auklet" and "Parakeet Auklet". ► Top 3 similar ImageNet classes are in the below table to roughly represent their

Their distributions are similar (both have "black grouse" and "oystercatcher" but still differ (one has "black swan" while the other has "junco"). \triangleright Co-Tuning works by finding meaningful category relationship $p(y_s|y_t)$ as long as