VisDA Classification Challenge: Honorable Mention Talk

*Kaichao, You *Zhangjie, Cao Hong, Liu Mingsheng, Long

Tsinghua University, China

September 14, 2018
Logic:

- Challenges
- Solutions
Relation Shift

(a) horse in training set

(b) horse in validation set

Figure: examples showing relation-shift problem in VisDA2018
Relation Shift

- Training data is generated by render engines of games
- Each single object looks real
- Object relation is not the same as that in reality
- Domain adaptation model may suffer from such relation shift
Relation Shift

- Refine training data in an automatic way
- Images with multiple objects often have low confidence on each class.
- Train a 13-way classifier on source with denoise cross entropy loss

\[
L = \frac{1}{n} \sum_{i=1}^{n} \max\{L_i, \gamma\}
\]

- \(n\) is the mini-batch size
- \(L_i\) is the original cross entropy loss for example \(i\)
- \(\gamma\) is progressively adjusted
- Noisy examples are ignored

- Images with a single object would have high confidence scores
- Keep those images with only a single object by controlling confidence threshold
Overwhelming Target Unknown Examples

By analysing validation data, we find that:

- $\frac{\#\text{unknown}}{\#\text{known}} \approx 10$
- $\forall 1 \leq i \leq 12, \frac{\#\text{unknown}_i}{\#\text{known}_i} \approx 100$ (There are 12 classes which are known)
- Extreme class unbalance which is hard to tackle

High risk of negative transfer:

- Standard domain adaptation methods will matching the overwhelming unknown target class data with source data
- Images in common label space will be ignored due to their small proportion
Exclude target unknown class in training process.

1. Train a 12-way classification model on refined source data and apply it to target domain
2. Select out those images with highest confidence
3. Train a 12-way classification model with selected images and refined images and apply it to target domain
4. Go to step 1 and repeat several times
5. Obtain target images with high confidence from known class
6. Label these target images with sudo-label predicted by our classifier
7. Semi-supervised domain adaptation using source images of known classes and selected target images with sudo-label of high confidence
8. Images with low confidence score are classified as unknown class
Foo/Bar-alike Images

- Can’t tell horses from dogs when there are only horses in training set
- An intrinsic problem when models trained on closed set are applied to open set classification
- Treat horse-alike images as horse.

(a) horse in validation set
(b) horse-alike in validation set (labeled with unknown class)
Observations:

- Our "unknown" accuracy is higher due to the special disposal of "unknown" category.
- Accuracies for "horse" and "person" are still not satisfying due to Foo/Bar-alike images.