VisDA Classification Challenge: Honorable Mention Talk

*Kaichao, You *Zhangjie, Cao Hong, Liu Mingsheng, Long

Tsinghua University, China

September 14, 2018

Logic:

- Challenges
- Solutions

Relation Shift

(a) horse in training set

(b) horse in validation set

Figure: examples showing relation-shift problem in VisDA2018

Relation Shift

- Training data is generated by render engines of games
- Each single object looks real
- Object relation is not the same as that in reality
- Domain adaptation model may suffer from such relation shift

Relation Shift

- Refine training data in an automatic way
- Images with multiple objects often have low confidence on each class.
- Train a 13-way classifier on source with denoise cross entropy loss

$$L = \frac{1}{n} \sum_{i=1}^{n} \max\{L_i, \gamma\}$$
 (1)

- n is the mini-batch size
- L_i is the original cross entropy loss for example i
- $oldsymbol{\circ}$ γ is progressively adjusted
- noisy examples are ignored
- Images with a single object would have high confidence scores
- Keep those images with only a single object by controlling confidence threshold

5 / 9

Overwhelming Target Unkown Examples

By analysing validation data, we find that:

- $\frac{\#unknown}{\#known} \approx 10$
- $\forall 1 \leq i \leq 12, \frac{\#unknown}{\#known_i} \approx 100$ (There are 12 classes which are known)
- Extreme class unbalance which is hard to tackle

High risk of negative transfer:

- Standard domain adaptation methods will matching the overwhelming unknown target class data with source data
- Images in common label space will be ignored due to their small proportion

Overwhelming Target Unkown Examples

Exclude target unknown class in training process.

- Train a 12-way classification model on refined source data and apply it to target domain
- Select out those images with highest confidence
- Train a 12-way classification model with selected images and refined images and apply it to target domain
- Go to step 1 and repeat several times
- Obtain target images with high confidence from known class
- Label these target images with sudo-label predicted by our classifier
- Semi-supervised domain adaptation using source images of known classes and selected target images with sudo-label of high confidence
- Images with low confidence score are classified as unknown class

Foo/Bar-alike Images

- Can't tell horses from dogs when there are only horses in training set
- An intrinsic problem when models trained on closed set are applied to open set classification
- Treat horse-alike images as horse.

(a) horse in validation set

(b) horse-alike in validation set(labeled with unknown class)

Leaderboard																		
#	User	Entries	Date of Last Entry	Per Category Accuracy														Mean
				plane	bcycl	bus	car	horse	horse	mcycl	person	plant	sktbd •	train	truck	unknown	^	
1	Yingwei.Pan	13	08/27/18	95.8	93.5	94.3	98.6	93.5	98.5	91.5	82.3	97.2	91.7	93.3	92.3	77.2	93.5	92.3
				(1)	(1)	(2)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
2	lianqing	23	08/28/18	91.0	76.6	86.5	94.5	83.1	36.9	83.4	69.8	90.0	40.8	69.1	65.4	9.8	73.9	69.0
2				(3)	(4)	(7)	(3)	(2)	(4)	(4)	(2)	(4)	(4)	(4)	(2)	(12)	(2)	(2)
3	youkaichao	15	08/28/18	94.0	79.2	90.5	97.4	63.2	36.0	81.1	45.6	93.0	35.4	84.5	46.2	42.2	70.5	68.3
				(2)	(3)	(4)	(2)	(4)	(5)	(7)	(4)	(3)	(7)	(2)	(6)	(8)	(3)	(3)

Observations:

- Our "unknown" accuracy is higher due to the special disposal of "unknown" category.
- Accuracies for "horse" abd "person" are still not satisfying due to Foo/Bar-alike images